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ARTICLE

Sequence-Based Prioritization of Nonsynonymous
Single-Nucleotide Polymorphisms for the Study
of Disease Mutations
Rui Jiang,* Hua Yang,* Linqi Zhou, C.-C. Jay Kuo, Fengzhu Sun, and Ting Chen

The increasing demand for the identification of genetic variation responsible for common diseases has translated into
a need for sophisticated methods for effectively prioritizing mutations occurring in disease-associated genetic regions.
In this article, we prioritize candidate nonsynonymous single-nucleotide polymorphisms (nsSNPs) through a bioinfor-
matics approach that takes advantages of a set of improved numeric features derived from protein-sequence information
and a new statistical learning model called “multiple selection rule voting” (MSRV). The sequence-based features can
maximize the scope of applications of our approach, and the MSRV model can capture subtle characteristics of individual
mutations. Systematic validation of the approach demonstrates that this approach is capable of prioritizing causal mu-
tations for both simple monogenic diseases and complex polygenic diseases. Further studies of familial Alzheimer diseases
and diabetes show that the approach can enrich mutations underlying these polygenic diseases among the top of
candidate mutations. Application of this approach to unclassified mutations suggests that there are 10 suspicious mu-
tations likely to cause diseases, and there is strong support for this in the literature.
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With the accelerating advancement of biomedical research,
it has been widely accepted that inherited genetic varia-
tion plays an important role in the pathogenesis of com-
mon diseases, including heart disease, hypertension, di-
abetes, cancer, and many others, making the identification
of causal genes and genetic variants the primary step to-
ward the prevention, diagnosis, and treatment of these
diseases.1–3 Family-based linkage analysis and population-
based association studies have been the two major cate-
gories in which there have been remarkable successes in
the identification of causal genetic variants. With use of
a transmission model, linkage analysis explains the pat-
tern of inheritance of phenotypes and genotypes exhib-
ited in a pedigree. It works well for rare Mendelian diseases
in which an individual genetic variant in a single gene is
both necessary and sufficient to cause a disorder, but it
has limited explanatory power when a single locus fails
to explain a significant fraction of a disease.1 In contrast,
association studies that test whether the frequencies of
alleles in patients are significantly different from those
in control individuals are most meaningful when ap-
plied to genetic variants that have clear biological relation
to the disease phenotype, but they are minimally effec-
tive for whole-genome searches in large and/or mixed
populations.1

The emergence of powerful yet low-cost sequencing
techniques4,5 has been opening a new era in biotechnol-
ogy in which the examination of all genetic variants in a
large number of affected individuals and controls has

become more and more feasible. For instance, the Inter-
national HapMap Project has reported 11 million SNPs,
including 10 completely sequenced 500-kb regions in
which essentially all information about common DNA
variation has been extracted.3 Another major data source,
the Swiss-Prot database, has collected 120,000 nonsynon-
ymous SNPs (nsSNPs).6 With the advent of such abundant
information, traditional statistical methods confront ever-
greater challenges. Linkage analysis has low power for
complex diseases that are thought to be caused by the
combined effect of many susceptible genetic variants and
their interactions with environmental factors, whereas as-
sociation studies suffer from serious multiple-hypothesis-
testing problems when applied to a number of markers in
a large population.1 Indeed, the demand for identification
of causal genetic variants among a vast number of irrel-
evant ones in which they are immersed has translated into
a need for sophisticated tools integrating biophysical and
biochemical knowledge with statistical learning methods,
to effectively prioritize genetic variants underlying com-
plex diseases.

Typically, in the traditional approach to the study of
disease mutations (fig. 1, left panel), 10–30-Mb genetic re-
gions are initially identified after establishing statistically
significant genomewide evidence of linkage or association.
Then, the suspicious regions are reduced to !1 Mb by a
fine-mapping procedure, and candidate genetic variants
are identified by sequence analysis. Finally, causal genetic
variants are determined by functional tests.2 With the
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Figure 1. The traditional and the proposed bioinformatics approaches for disease mapping. In the traditional approach, 10–30-Mb
genetic regions are obtained after establishing statistically significant genomewide evidence of linkage or association. Then, a fine-
mapping procedure is applied to reduce the regions to !1 Mb. Finally, sequence analysis and functional tests are applied, to determine
causal genetic variants. In the proposed bioinformatics approach, the fine-mapping step is replaced by the direct sequencing of the
10–30-Mb regions. To determine causal genetic variants, a bioinformatics approach integrating biophysical and biochemical, as well
as statistical learning methods, is adopted.

emergence of current sequencing techniques,4,5 however,
skipping the fine-mapping step and directly sequencing
the 10–30-Mb genetic regions becomes increasingly pos-
sible. With a vast number of candidate genetic variants
being sequenced, it becomes impractical to apply func-
tional tests to determine causal genetic variants. Instead,
a bioinformatics approach integrating biophysical and bi-
ochemical knowledge with statistical learning methods
should be adopted (fig. 1, right panel).

Genetic variants in single bases of DNA sequences yield
SNPs, among which nsSNPs occurring in protein-coding
regions lead to amino acid substitutions in protein prod-
ucts, potentially affecting protein functions and causing
common diseases. Research about distinguishing deleteri-
ous amino acid substitutions from neutral nsSNPs in lab-
oratory mutagenesis experiments of the Escherichia coli lac
repressor and the bacteriophage T4 lysozyme aim mainly
at assigning binary labels (deleterious/neutral) to the mu-
tations.7–15 Recent studies about distinguishing disease-
causing amino acid substitutions from neutral nsSNPs in
human proteins generally focus on predicting numeric
scores (indicating the likelihood of causing diseases) of the
mutations.14–23 Despite notable successes, these methods
have not yet reasoned from the real situation in identi-
fying disease mutations—that is, with a number of mu-
tations distributed in genetic regions, the task would be
to prioritize (rank) them, to identify those that are most
likely to cause diseases. Regardless of the diverse objectives
of these studies, their methods share two common char-
acteristics. First, all of them are based on a set of features
calculated using sequence, structure, annotations, and evo-
lutionary information of proteins, despite the variation in
the definitions of features. Second, all of these methods
adopt standard rule-based models and/or statistical learn-
ing models, including logistic regression models,18 Bayes-

ian models,13 neural networks,24 decision trees,25,26 support
vector machines,27,28 random forests,29 and many others.
Use of protein structure information to calculate features
restricts the scope of applications for many of these meth-
ods, because the availability of protein-structure infor-
mation is quite limited for human proteins. Therefore, a
set of sequence-based features is preferable for maximizing
the scope of applications for prioritizing disease muta-
tions. On the other hand, most of the standard statistical
learning models are not designed to capture subtle char-
acteristics of mutations; thus, a carefully designed learn-
ing model is needed to use the calculated features more
effectively.

In this article, we report the principle, development, and
effectiveness of a disease mutation–prioritization method,
and we offer a free Web-based, interactive software tool.
Compared with existing methods for classifying or pre-
dicting disease mutations, our approach provides a more
realistic solution for identifying such mutations. Specifi-
cally, we prioritize mutations occurring in genetic regions,
to find those that are most likely to cause diseases. We put
forward a novel scheme to calculate a set of 26 features
that uses only protein-sequence information and multiple-
sequence alignments, and we propose a newly designed
multiple selection rule voting (MSRV) learning model to
capture subtle characteristics of mutations from individual
types of amino acids. Then we systematically analyze the
effectiveness of the feature set and the learning model,
using rigorous hypothesis testing, after which we integrate
the easy-to-calculate feature set and the state-of-the-art
learning model and validate that our prioritization meth-
od is both effective and robust in prioritizing causal mu-
tations for not only simple monogenic diseases but also
complex polygenic diseases. As application examples, we
demonstrate the successful identification of 10 suspicious
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mutations from currently unannotated ones. With an
ever-increasing amount of candidate genetic variants ex-
amined in a large number of affected and control individ-
uals with use of today’s powerful sequencing techniques,
our approach could provide reliable in silico screening for
disease-causing variants, thereby assisting in the preven-
tion, accelerating the diagnosis, and guiding the treatment
of common diseases.

Material and Methods
Data Sources

The Swiss-Prot database6 is the major data source used to train
our learning model and to validate our approach. Version 50.2
(released June 27, 2006) of the Swiss-Prot database contains
26,265 amino acid–substitution entries for 4,225 human proteins,
with each substitution annotated as “Disease,” “Polymorphism,”
or “Unclassified.” For a clear and concise presentation, we refer
to amino acid substitutions with the annotation “Disease” as dis-
ease mutations and those with the annotation “Polymorphism”
as neutral nsSNPs. The International HapMap Project database3

is another data source used to validate our approach. By the end
of 2005, the International HapMap Project database had collected
11 million SNPs for which accurate and complete genotypes have
been obtained in 269 DNA samples from four populations.3 In
addition, the Ensembl database provides a comprehensive source
for large genome sequences of 19 species and integrated genome-
variation data for human and mouse.30 The Pfam database31 is
the data source used to obtain multiple-sequence alignments for
query proteins. Version 20.0 (released May 2006) contains curated
alignments and models for 8,296 protein families, and ∼74% of
the known protein sequences have at least one match to Pfam.
In this article, we study human proteins that have at least 20
homologous proteins in the Pfam database, and we focus on
amino acid substitutions occurring in known protein domains.
In total, we collected 9,640 disease mutations, 4,581 neutral ns-
SNPs, and 1,517 unclassified mutations in 2,165 human proteins
from the Swiss-Prot database.

Principles of Prioritization in MSRV

Mutations that cause common diseases generally raise significant
changes in the structures and functions of proteins. In contrast,
neutral nsSNPs typically result in minor or even negligible
changes in protein structures, and they hardly affect the normal
functioning of proteins. This difference has been the fundamen-
tal principle for distinguishing disease mutations from neutral
nsSNPs.11,13,14,16,22 Nevertheless, the availability of protein-struc-
ture information limits the applications of this principle. Recent
studies of proteins related to human diseases suggest that, for
disease mutations, the mutated amino acids rarely appear in the
corresponding positions in homologous proteins. It has been
shown that a mutation has an ∼90% possibility of causing a dis-
ease if the mutated amino acid never appears at the same position
in homologous proteins, and this rule can explain ∼30% of dis-
ease mutations.23 This observation, based on the evolutionary
conservation of amino acids in homologous proteins, has been
adopted as a major principle for identifying disease mutations.10,

17,18,21,23 In addition, the physicochemical properties of the orig-
inal and the substituted amino acids, as well as the characteristics

of amino acids around the substitutions, could also provide val-
uable information for the identification of disease mutations.23

From these principles and observations, we reason that a bio-
informatics framework capable of automatically extracting the
physicochemical properties of amino acids from protein se-
quences and calculating the evolutionary conservation infor-
mation from homologous proteins might be a powerful tool for
identifying mutations responsible for common diseases. On the
basis of this notion, we designed a three-step algorithm—MSRV.
As illustrated in figure 2, in the first step, a feature-extracting
procedure is applied to candidate mutations, and a set of 26 nu-
meric features is automatically extracted. These features are de-
rived from protein sequences (according to the Swiss-Prot data-
base6) and from multiple-sequence alignments (according to the
Pfam database31), with no structure information involved. In the
second step, mutations with known effects in the Swiss-Prot da-
tabase are used to train a statistical learning model, which is
composed of 20 modules, one for each type of amino acid. This
step can be done offline in advance and can be automatically
updated with the updates of the Swiss-Prot and Pfam databases.
Finally, in the third step, candidate mutations with numeric fea-
tures are evaluated by the trained learning model to receive
scores, and a sorting procedure is applied to rank the candidate
mutations in nonincreasing order on the basis of their scores.

Calculation of the Feature Set

We derived a set of 26 features that are based on three physico-
chemical properties (molecular weight, pI value, and hydropho-
bicity scale) of amino acids, three relative frequencies for the
occurrences of amino acids in the secondary structures (helices,
strands, and turns) of proteins with known secondary structural
information, and two evolutionary conservation scores. The unit
of molecular weight is the Dalton. The isoelectric point (pI) is
the pH at which a molecule carries no net electrical charge. The
hydrophobicity scale of Kyte and Doolitle is derived from the
physicochemical properties of amino acid side chains.32 The three
relative frequencies are calculated by counting the occurrences
of amino acids in the corresponding secondary structure of pro-
teins with known secondary structural information. All of these
six properties can be either obtained from the literature32,33 or
calculated using only the sequence information of proteins.34 The
conservation scores are defined as the frequencies of occurrences
of the amino acids (the original or the substituted) in the cor-
responding position of the Pfam multiple-sequence alignment.

For a given amino acid substitution pair (OrgrSub) in a certain
query protein, the above physicochemical properties and relative
frequencies are calculated for the original (Org) and the substi-
tuted (Sub) amino acids, as well as in a window-sized situation
that includes the neighbors of the original amino acids in the
query protein sequence and in a column-weighted circumstance
in which the query protein sequence is aligned with its homol-
ogous proteins. The calculation of the properties for the original
and the substituted amino acids is straightforward. The window-
sized properties (where W is the window size) are calculated as
the average of the corresponding properties for the original amino
acid and its neighbors in the query protein sequence. InW � 1
this article, we set the window size at (because a helicesW p 9
are defined by repeated hydrogen bonds with a period of 4 aa
and have 3.6 aa per turn35). The column-weighted properties are
calculated as follows. For the query protein, its homologous pro-
teins are extracted from the Pfam database.31 With the supposi-
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Figure 2. The concept of the MSRV framework. In the first step, a feature-extracting procedure is applied to candidate mutations to
automatically extract a set of 26 numeric features. In the second step, mutations with known effects in the Swiss-Prot database are
used to train a statistical learning model, which is composed of 20 modules, one for each type of amino acid. In the third step,
candidate mutations with numeric features are evaluated by the trained model to receive scores, and a sorting procedure is applied to
rank the candidate mutations in nonincreasing order on the basis of their scores.

tion that the substitution occurs at a position corresponding to
the cth column of the alignment, the column-weighted properties
are then calculated as the weighted average of the corresponding
properties for all 20 kinds of amino acids, where the weight of a
certain kind of amino acid is the frequency of its occurrence in
the cth column of the alignment.

With the above properties calculated, we define the feature set
that includes 24 physicochemical or relative frequency properties
(with each of the six amino acid properties calculated in four
different situations) and two conservation scores (for the original
amino acids and the substituted amino acids), as shown in table
1.

MSRV Model

The underlying reasons that different types of amino acids cause
diseases vary significantly. For instance, mutations from cysteines
to other amino acids are very likely to destroy disulfide bridges
within polypeptides, changing structures of proteins and conse-
quently inducing the loss-of-protein functions.23 As another ex-
ample, mutations from glycines to other amino acids are likely
to cause diseases because glycine is smaller than any other amino
acids and prefers the turn structure second only to proline.23 With
this understanding, it is reasonable to assume that each of the
20 aa is biased toward different features and that a disease mu-
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Table 1. Summary of the Proposed Features

Category

Physicochemical Relative Frequency in
Conservation
Frequency in

MSAa

Molecular
Weight

pI
Value Hydrophobicity Helices Strands Turns

Original X1 X2 X3 X4 X5 X6 X25

Substitution X7 X8 X9 X10 X11 X12 X26

Window sized X13 X14 X15 X16 X17 X18

Column weighted X19 X20 X21 X22 X23 X24

NOTE.—Each of the six amino acid properties is calculated in four different situations, resulting in X1–X24. The
two conservation scores for the original and the substituted amino acids become X25 and X26, respectively.

a MSA p multiple-sequence alignment.

tation is likely to cause dramatic change to some of these features.
This assumption immediately suggests the following multiple-
selection strategy. We first partition the entire training data set
into 20 subsets according to the original amino acids of the sam-
ples, and then we train a statistical learning model for each of
these 20 subsets separately and combine them into one scoring
system. Thus, the scoring system consists of 20 modules. In the
training process, we apply a greedy feature-selection method to
select the optimal subset of features in each module.

The feature-selection technique is independent of the learning
model. Our objective is to select an optimal feature set for each
module, to maximize certain criterion (e.g., area under the re-
ceiver operating characteristic curve [AUC]) for training samples.
Because the number of possible feature subsets is exponential to
the number of features (i.e., for n features), it is computation-n2
ally impractical to enumerate all subsets to select the best one.
Instead, we adopt a sequential forward feature selection (SFS)
technique, a greedy algorithm that can produce a reasonable ap-
proximation of the true optimum with much less computation
time. The SFS technique is as follows.

The SFS Algorithm
1. XoptRF; JoptR0; DR26;
2. XRF; YR( ); dR1;1 � i � 26
3. while , dod ≤ D
4. y R arg max J (X ∪ {a}) ;d a�Y

5. X R X ∪ (y ) ;d

6. Y R Y � (y ) ;d

7. d R d � 1;
8. if , thenJ(X) 1 Jopt

9. X R X;opt

10. J R J(X);opt

11. end if
12. end while
13. return Xopt.

Let be the optimal feature set and be the optimal criterionX Jopt opt

(e.g., the maximum AUC). The basic idea of the algorithm is to
start from an empty feature set ( ) and repeatedly add one featureX
( ) at a time (conditional on the current optimal set), to produceyd

the next optimal subsets, until all features have been added.
Among all of the subsets produced in this process, we select the
one with the best criterion, . The function is calculated byJ J(7)opt

taking a subset of features as input and performing 10-fold cross-
validation by use of the training samples with the underlying
learning model.

The learning model is independent of the feature-selection al-
gorithm. Although, in general, any statistical learning method
can be used as the underlying learning model, the ideal model
is one with the best prediction power and the lightest compu-

tational burden. Recent studies of statistical learning suggest that
random forests29 have preferred performance in many classifica-
tion applications.23 This method is easy to implement, fast, and
capable of dealing with large-scale data. On the basis of the idea
of ensemble learning used in random forests, we propose a rule-
voting method and use it as the underlying learning model in
our scoring system. The learning model in each of the 20 modules
is an ensemble of decision trees, each of which is trained on a
data set bootstrapped from training samples. Decision trees are
grown to the maximum size without pruning, according to the
C4.5 methodology.24,26 At each node of the trees, a small number
of features (typically three) is randomly selected from a corre-
sponding module’s optimal feature set, and the one that maxi-
mizes the information gain is used to split the node. After a tree
is generated, leaf nodes in the tree can be thought of as rules
defined by the paths from the root of the tree to the leaf nodes.
These rules claim that the mutation samples that fall into leaf
nodes are disease causing, and the frequencies of disease-causing
samples against all data samples fallen into the rules serve as
empirical measures of the confidences of the corresponding rules.
When a future test sample comes, all rules, one for each tree in
the ensemble, are retrieved, and the confidences (frequencies of
disease-causing samples) for the rules are averaged to provide a
score indicating how likely it is that the test sample is disease
causing.

Results
Greedy Feature Selection

The SFS algorithm is capable of selecting an (approximate-
ly) optimal subset of features for each of the 20 modules.
To demonstrate, figure 3 shows the features selected by
the algorithm with use of mutations collected in the Swiss-
Prot database. This figure shows that each module has
preference for its own optimal subset of features and that
the numbers of features in the subsets vary significantly.
For example, tryptophan has more molecular weight than
any other amino acid. Consequently, only the column-
weighted molecular weight (X19) and the relative frequen-
cy of the original amino acid in the multiple-sequence
alignment (X25) are selected to characterize the optimal
learning model for tryptophan. As another example, leu-
cine is one of the amino acids that prefers the helix struc-
ture the most; thus, the relative frequency of the substi-
tuted amino acid in helices (X10) and the column-weighted
relative frequency in helices (X22) are included in the op-
timal learning model for leucine.
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Figure 3. Features selected by the SFS algorithm. Horizontal axis
p indices of the features; vertical axis p modules. The selected
features are marked in blue.

In detail, the original features are not included in the
optimal feature sets, because modules are partitioned ac-
cording to the original amino acids. The two conservation
scores (X25 and X26) are the most frequently selected fea-
tures (30 times in total and 0.75 times per feature for each
module). The column-weighted features (X19–X24) are also
frequently selected (81 times in total and 0.68 times per
feature for each module). The window-sized features (X13–
X18) and the substitution features (X7–X12) are less fre-
quently selected (57 and 56 times in total, and 0.48 and
0.47 times per feature for each module, respectively). To
further explore the performance of individual features, we
adopted a mechanism that was similar to the one used in
the random forests23,29 and obtained the relative impor-
tance of individual features in each module (fig. 4). The
results confirm that the two conservation scores are of the
most importance. The column-weighted features are also
significantly more important than the window-sized fea-
tures and the substitution features. The window-sized fea-
tures are slightly more important than the substitution
features.

Performance of MSRV

The MSRV framework works as a scoring system, and the
performance of this scoring system depends on the set of
proposed features. Within available methods for extract-
ing features, we assessed whether our feature set can out-
perform others in the classification of deleterious muta-
tions occurring in the E. coli lac repressor8,9 and the bac-
teriophage T4 lysozyme.7 We applied two classification
methods (the decision tree24 and the support vector
machine27,28) to these mutagenesis experimental data, and
we compared the classification accuracy with two pub-
lished studies.11,12 The 10-fold cross-validation (homoge-
neous, heterogeneous, and mixed)12 results showed that

our feature set can lead them by up to 3% when working
with the decision tree and by up to 10% when working
with the support vector machine, suggesting that our fea-
ture set was more effective in capturing underlying char-
acteristics of mutations. Moreover, since our feature set
used only sequence information, whereas the published
one11 requires information on protein three-dimensional
structure (derived from the Protein Data Bank with protein
homology modeling), in practice, our feature set can be
applied to almost every protein, whereas theirs will be
restricted to proteins with known structures.

The performance of this scoring system also depends on
the statistical learning methods used to determine scores
from features. Within available methods for determining
scores, we evaluated whether our approach can outper-
form others in the prediction of potential effects of mu-
tations occurring in human proteins. We applied the sup-
port vector machine,27,28 the random forest,29 and the MSRV
model with our feature set to mutations occurring in hu-
man proteins and collected in the Swiss-Prot database, and
we compared the AUCs. The 10-fold cross-validation re-
sults showed that the AUC (�SD) for the MSRV model
was , which was significantly higher than0.8484 � 0.0065
that for the random forest ( ) and the sup-0.8220 � 0.0073
port-vector machine ( ). In other words,0.8058 � 0.0042
the MSRV model was more capable of producing reason-
able scores from features.

An ideal scoring system should give high scores to dis-
ease mutations and low scores to neutral nsSNPs. Conse-
quently, the scores for these two types of mutations are
expected to be significantly different from each other. To
assess whether our scoring system can distinguish disease
mutations from neutral nsSNPs, we performed large-scale
leave-one-out cross-validation experiments on annotated
mutations in the Swiss-Prot database. In each validation
run, a disease was selected, and its causal genes were col-
lected. Mutations occurring in the causal genes were col-
lected to form the test set, and those occurring in all other
genes were used as the training set. Then, an MSRV model
was trained on the training set, and mutations in the test
set were scored using the trained model. Finally, a rank-
sum test was applied to the scores of all mutations in the
test set, and a P value was calculated to indicate the per-
formance of the scoring system. We performed a total of
three tests, as described below.

In the first test, we collected 30 diseases from 1,641 dis-
eases in the Swiss-Prot database. All 30 diseases have com-
parable numbers of disease mutations and neutral nsSNPs
in associated proteins. Thus, a total of 30 rank-sum tests
were performed. The P values for all of the 30 diseases
were !.05. In other words, the MSRV scoring system can
effectively distinguish disease mutations from neutral
nsSNPs. In particular, table 2 shows 11 diseases that have
comparable numbers of disease mutations and neutral ns-
SNPs among the 30 diseases. The P values, ranging from

for age-related macular degeneration (ARMD2�23.63 # 10
[MIM 153800]) to for osteogenesis imperfecta�93.67 # 10
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Figure 4. Relative importance of individual features in each module. Horizontal axis p indices of the features; vertical axis p
modules. The relative importance values range from 0.00 to 1.00, with 0.00 (white) indicating the least importance and 1.00 (red)
indicating the greatest importance.

(OI) type II (OI-II [MIM 166210]), demonstrate that the
difference between the scores of disease mutations and
neutral nsSNPs is statistically significant.

In the second test, we extended the leave-one-out cross-
validation experiment to examine two 10-Mb genetic re-
gions on chromosome 7, in which mutations have been
densely identified and annotated. For each region, we used
all mutations outside the region to train an MSRV model,
scored all mutations occurring in the region using the
trained model, and applied the rank-sum test to calcu-
late the statistical significance of the scores of disease
mutations and neutral nsSNPs. For the region centered
at the gene of STEA2_HUMAN (MIM 605094) (position
89,678,936–99,678,936 on chromosome 7), 48 disease mu-
tations and 50 neutral nsSNPs in 22 proteins were col-
lected, and the difference between the scores of disease
mutations and neutral nsSNPs was statistically significant
( ). For the region centered at the gene�16P p 2.22 # 10
of CALU_HUMAN (MIM 603420) (position 128,166,653–
138,166,653 on chromosome 7), 10 disease mutations and
33 neutral nsSNPs in seven proteins were collected, and
the difference between the scores of disease mutations and
neutral nsSNPs was statistically significant (P p 1.33 #

).�510
In the third test, we applied the above experiment to

the entire mtDNA. We first used all mutations occurring
in nuclear DNAs to train an MSRV model. Then we scored

all neutral nsSNPs occurring in the mtDNA and all mu-
tations causing one of the following three mitochondrial
diseases: Leber hereditary optic neuropathy (LHON [MIM
535000]), mitochondrial encephalopathy lactic acidosis
stroke (MELAS [MIM 540000]), and Leigh syndrome (LS
[MIM 256000]). Finally, we ran the rank-sum test to cal-
culate the P value. The result ( ) showed�5P p 4.74 # 10
that the difference between the scores of disease mutations
and neutral nsSNPs occurring in the mtDNA was statis-
tically significant.

All three tests confirm that the difference between
the scores of disease mutations and neutral nsSNPs was
statistically significant, indicating that our approach
can effectively distinguish disease mutations from neu-
tral nsSNPs.

Prioritization of Mutations Causing Monogenic Diseases

Although we can directly apply our scoring system to pre-
dict disease mutations, in practical terms, investigators are
more interested in screening out disease mutations from
a number of suspicious mutations occurring in genetic
regions (10–30 Mb in size) that are associated with the
diseases of interest. To simulate this real-life situation, we
selected a number of 10-Mb chromosomal regions cen-
tered at genes annotated as causing Mendelian diseases,
and we performed a large-scale leave-one-out cross-valida-
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Table 2. P Values of the Rank-Sum Tests

Disease/Region Name

No. of Mutations

PDisease Neutral

ARMD2 26 9 �23.62 # 10
Congenital bilateral absence of the vas deferens (MIM 277180) 10 16 �23.28 # 10
Colorectal cancer (MIM 114500) 11 27 �22.43 # 10
Polycystic kidney disease type I (MIM 173900) 22 14 �21.56 # 10
Alport syndrome (MIM 203780) 13 13 �34.79 # 10
Retinitis pigmentosa (RP [MIM 268000]) 15 15 �33.69 # 10
Wilson disease (MIM 277900) 69 10 �49.33 # 10
Cystic fibrosis (MIM 219700) 111 16 �41.35 # 10
OI type IV (OI-IV [MIM 166220]) 17 46 �62.54 # 10
OI type III (OI-III [MIM 259420]) 22 28 �76.26 # 10
OI type II 73 46 �93.67 # 10
STEA2_HUMAN region on chromosome 7 (10 Mb, 22 proteins) 48 50 �162.22 # 10
CALU_HUMAN region on chromosome 7 (10 Mb, 7 proteins) 10 33 �51.33 # 10
LHON, MELAS, and LS 33 91 �54.74 # 10

tion experiment to assess whether our approach was ca-
pable of prioritizing mutations occurring in these regions.

As illustrated in figure 5, in each validation run, one
disease mutation, together with all neutral nsSNPs occur-
ring in the same genetic region, is used for the test, and
all mutations occurring outside the genetic region are col-
lected to form the training set. Then, an MSRV model is
trained on the training set, and mutations in the test set
are scored using the trained model. Finally, all mutations
in the test set are ranked in nonincreasing order on the
basis of their scores. This prioritization procedure is re-
peated for every disease mutation, and the number of
prioritization procedures performed is then equal to the
number of disease mutations in all genetic regions. From
the prioritization results, we calculated the sensitivity and
specificity values corresponding to different rank thresh-
old values. The sensitivity is defined as the percentage of
disease mutations ranked above a particular threshold,
and the specificity is defined as the percentage of muta-
tions ranked below this threshold.36 Considering that dif-
ferent regions have different numbers of mutations, we
adopted the relative rank positions (the percentiles of mu-
tations, independent of the number of mutations) instead
of the raw rank positions (the ranks of mutations, de-
pending on the number of mutations) as the rank thresh-
old values. To obtain a comprehensive picture of the per-
formance of our prioritization approach, we plotted its
relative rank ROC curve and calculated the AUC. We also
calculated the average relative rank position of disease mu-
tations by averaging the percentiles of the disease muta-
tions, because this number gives us a straightforward mea-
sure for the performance of the prioritization method.

To validate the effectiveness of the MSRV approach for
prioritizing mutations that cause monogenic diseases, we
selected from the Swiss-Prot database 30 chromosomal
regions that contain mutations that cause Mendelian dis-
eases. The criteria for selecting a region were that the num-
bers of disease mutations and neutral nsSNPs occurring in
the region had to be both comparable and 110. Then we
applied the leave-one-out cross-validation experiment to

these regions and summarized the results in figure 6A and
table 3. For a total of 1,095 disease mutations and 1,062
neutral nsSNPs occurring in the 30 genetic regions, the
AUC is 86.6%, and the average relative-rank position
for disease mutations is 15.9%. Both criteria suggest
that MSRV is effective in putting disease mutations among
the top of the ranking. Comparisons with two often-
cited programs—SIFT10 and PolyPhen17—show that MSRV
is more effective than both SIFT ( ;AUC p 75.2% rank p

) and PolyPhen ( ; ) in24.8% AUC p 74.8% rank p 25.3%
prioritizing disease mutations responsible for monogenic
diseases.

To validate the robustness of the MSRV approach in
dealing with “unknown” data, we extracted 2,256 unan-
notated nsSNPs in those 30 genetic regions from the In-
ternational HapMap Project3 and the Ensembl30 databases.
We mixed these unannotated mutations with the known
mutations extracted from the Swiss-Prot database, to ex-
amine whether our approach was still capable of putting
known disease mutations among the top of the ranking.
We then repeated the leave-one-out cross-validation ex-
periment. For a total of 1,095 disease mutations and 3,318
“neutral” nsSNPs (1,062 annotated mutations from the
Swiss-Prot database and 2,256 unannotated ones from the
International HapMap Project and the Ensembl databases)
occurring in the 30 genetic regions, the AUC is 82.3%,
and the average relative-rank position for disease muta-
tions is 17.8% (table 3). There is no surprise that both
criteria are slightly worse than prioritization results for
mutations purely from the Swiss-Prot database, because
some of the unannotated mutations may actually be re-
sponsible for some diseases—a situation that we did not
take into consideration. Nevertheless, the performance of
our approach shows its robustness.

Prioritization of Mutations Underlying Polygenic Diseases

In many cases, common diseases are not caused by a single
mutation in a single gene; instead, multiple mutations
occurring in more than one gene across chromosomes
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Figure 5. The large-scale leave-one-out cross-validation experiment for assessing prioritization performance. In each validation run,
the test set was formed by combining one disease mutation with all neutral nsSNPs occurring in the same genetic region. The training
set was formed by all mutations occurring outside the genetic region. Then, the MSRV model was trained on the training set, and
mutations in the test set were scored using the trained model. Finally, all mutations in the test set were ranked in decreasing order
on the basis of their scores. This prioritization procedure was repeated for every disease mutation, so the number of prioritization
procedures performed was equal to the number of disease mutations in all genetic regions.

may have combined effects in inducing polygenic dis-
eases.37,38 Indeed, polygenic diseases are more general in
nature, but the identification of genetic variants respon-
sible for these diseases is more challenging because of their
intrinsic complexity, especially when the results of linkage
analysis and association studies lack adequate repeatabil-
ity and robustness.37

To validate the effectiveness of the MSRV approach to
polygenic diseases, we extracted from the Swiss-Prot da-
tabase 20 polygenic diseases with 40 disease-causing pro-
teins (table 4). Using these 40 proteins and their corre-
sponding 10-Mb genetic regions, we extracted a total of
379 disease mutations and 1,261 neutral nsSNPs, and we
applied the leave-one-out cross-validation method to
prioritize the disease mutations. As shown in figure 6B
and table 5, the AUC is 82.3%, and the average relative-
rank position for disease mutations is 17.7%. Both cri-
teria suggest that the MSRV approach is capable of en-
riching mutations underlying polygenic diseases among
the top of the ranking. Comparisons with SIFT (AUC p

; ) and PolyPhen ( ;75.4% rank p 27.0% AUC p 70.3%
) also indicate that MSRV is effective in pri-rank p 29.7%

oritizing mutations underlying polygenic diseases. Ap-
plication of the leave-one-out cross-validation method
to prioritize the mixed data that contain additional 3,967

unannotated mutations from the International HapMap
Project and the Ensembl databases shows that the AUC
is 81.8%, and the average relative-rank position for dis-
ease mutations is 18.2% (table 5), suggesting the ro-
bustness of MSRV in prioritizing mutations underlying
polygenic diseases.

The extensive studies mentioned above suggest that, for
diseases caused by combined effects of multiple mutations
occurring in multiple genes, our approach is capable of
enriching disease mutations among the top of the ranking.
To demonstrate the prioritization of mutations underlying
polygenic diseases, we collected two sets of mutation data
related to Alzheimer disease and diabetes and applied the
MSRV approach to prioritize suspicious mutations respon-
sible for these diseases.

For Alzheimer disease, we collected the mutation data
for familial Alzheimer disease 1 (AD1 [MIM 104300]), fa-
milial Alzheimer disease 3 (AD3 [MIM 607822]), and fa-
milial Alzheimer disease 4 (AD4 [MIM 606889]). For AD1,
the prioritization results showed that two of three disease
mutations were ranked at the top among a total of 20
mutations. For AD3, 70 disease mutations and 42 neutral
nsSNPs were collected, and all of the top 11 mutations in
the prioritization results were disease causing. For AD4, 5
disease mutations and 48 neutral nsSNPs were collected,
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Figure 6. The rank ROC curves for prioritizing disease mutations collected in the Swiss-Prot database. A, The rank ROC curve for the
30 monogenic diseases. B, The rank ROC curve for the 20 polygenic diseases. The zoom-in plots show that the rank ROC curve of MSRV
climbs much faster toward the upper left corner of the plots than do those of SIFT and PolyPhen, suggesting that MSRV has better
prioritization performance than both of them.

and 2 of the disease mutations were ranked among the
top 5 in the prioritization results.

For diabetes, it has been shown that several mutations
occurring in PPARg (MIM 601487) might impair tissue
insulin sensitivity and result in severe insulin resistance.39–

43 In our study, the common mutation P12A (mutation
PrA at position 12) received a medium prediction score
of 0.450 (ranking 9 of 16), suggesting that it was on the
boundary of causing diseases. This result was consistent
with a previous study of 13,000 individuals,39 which
showed that the more common proline allele conferred a
modest (1.25-fold) but statistically significant ( )P p .002
increase in diabetes risk. The mutations P467L and V290M
both received high prediction scores (0.969 and 0.800,
respectively) and top rank positions (1 of 16 and 3 of 16,
respectively), indicating their high disease-causing prob-
abilities. The literature has shown that they existed in two
and one subjects, respectively, with severe insulin resis-
tance but were absent from 314 normal alleles.40 In ad-
dition to insulin resistance, recent studies have also shown
that two other mutations, F388L and R425C, both were
associated with familial partial lipodystrophy (FPLD [MIM
151660]).42,43 In our studies, they received high prediction
scores (0.877 and 0.881, respectively) and top rank posi-
tions (2 of 16 for both). Previous studies found that F338L
existed in a family of four members with FPLD but was
absent from 520 normal white alleles42 and that R425C
existed in one patient with FPLD but was absent from 96
normal alleles.43

These examples demonstrate the effectiveness of the
MSRV approach in prioritizing mutations underlying
polygenic diseases, illustrate the consistency between our
prioritization results and current knowledge of the dis-
eases, and suggest that the potential applications of our
approach have a broad scope.

Prioritization of Unclassified Mutations

To demonstrate real applications, we further applied MSRV
to 1,517 unclassified mutations collected in the Swiss-Prot
database (version 50.2). We first used all annotated mu-
tations in the Swiss-Prot database to train an MSRV model.
Then we scored the unclassified mutations and ranked
them on the basis of their scores. Finally, we selected the
10 mutations with the highest scores, to see whether they
were responsible for certain diseases as indicated in the
literature, as described below.

In HBB_HUMAN (MIM 141900), four unclassified mu-
tations, A129V, A70D, D21G, and H117P, received high
prediction scores (0.9882, 0.9818, 0.9798, and 0.9773, re-
spectively). The unstable mutation A129V was found in
two unrelated black families in association with hemo-
globin (Hb) S, Hb C, or b0 thalassemia. It has also been
shown that Hbs with this mutation exhibited a decreased
oxygen affinity.44 The mutation A70D, known as “Hb Se-
attle,” has been shown to be associated with a considerable
decrease in oxygen affinity45 and to cause mild-to-mod-
erate chronic hemolytic anemia in a white family in the
United States,46 as well as a Ukrainian family.47 The mu-
tation D21G, named “Hb Connecticut,” has been found
in members of a family of Polish origin living in the
United States. Several individuals with this mutation ex-
hibited mild anemia. Hbs with this mutation also exhib-
ited decreased oxygen affinity and slightly decreased effect
of allosteric effectors on the oxygen equilibrium proper-
ties.48 The mutation H117P, called “Hb Saitama,” was iden-
tified in a 23-year-old Japanese female with hemolytic ane-
mia and jaundice but was absent from other members of
the family.49 From these evidences, we conclude that these
mutations are likely to cause anemia.

In CD36_HUMAN (MIM 173510), three unclassified mu-



Table 3. Prioritization of Mutations Occurring in the 30 Monogenic Disease Regions

Disease Name

No. of Mutations
Rank

(percentile)a

Disease Neutral Unannotated
Swiss-Prot

Only
Swiss-Prot, HapMap,

and Ensembl

A colon tumor (MIM 191170) 21 40 92 15.0 23.3
Antithrombin III deficiency (MIM 107300) 44 75 35 22.0 21.2
Autosomal dominant neurohypophyseal diabetes insipidus (MIM 125700) 32 53 65 3.6 1.2
Autosomal dominant RP (MIM 268000) 40 21 32 22.2 29.3
Best macular dystrophy (MIM 153700) 86 44 108 17.5 6.0
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (MIM 125310) 24 51 109 13.5 16.2
Chronic nonspherocytic hemolytic anemia (MIM 266200) 90 38 158 14.9 17.6
Citrullinemia type 1 (MIM 215700) 37 44 83 24.7 13.6
Crouzon syndrome (MIM 123500) 26 23 27 18.1 21.3
Dystrophic epidermolysis bullosa (MIM 131750 and 226600) 59 32 76 9.7 24.8
Epidermolysis bullosa simplex Weber-Cockayne type (MIM 131800) 23 87 222 9.7 23.5
Epidermolytic hyperkeratosis (MIM 113800) 23 88 225 5.9 14.3
Familial multiple endocrine neoplasia type I (MIM 131100) 33 45 90 8.6 25.8
Familial porphyria cutanea tarda (MIM 176100) 27 20 53 21.9 25.0
Glycogen storage disease II (MIM 232300) 32 13 80 16.5 7.4
Glycogen storage disease Ib (MIM 232220) 26 18 51 16.6 2.9
Hereditary nonspherocytic hemolytic anemia (MIM 172400) 21 10 35 22.5 2.9
Long QT syndrome type 1 (MIM 192500) 54 29 121 22.4 20.9
Maturity onset diabetes of the young type III (MIM 600496) 34 20 36 11.2 10.9
Mucopolysaccharidosis type IIIB (MIM 252920) 24 46 85 10.7 17.2
Nail-patella syndrome (MIM 161200) 30 15 76 10.8 13.8
OI-III 22 28 54 3.4 19.8
Sjoegren-Larsson syndrome (MIM 270200) 25 19 56 24.0 24.6
Smith-Lemli-Opitz syndrome (MIM 270400) 44 22 50 13.5 23.8
Tay-Sachs disease (MIM 272800) 38 48 29 21.2 20.7
Usher syndrome type 1B (MIM 276903) 24 13 23 15.5 28.0
Very long chain acyl-CoA dehydrogenase deficiency (MIM 201475) 25 40 92 20.6 28.9
X-linked chronic granulomatous disease (MIM 306400) 36 22 9 15.7 7.3
X-linked nephrogenic diabetes insipidus type I (MIM 304800) 72 29 42 21.2 25.6
X-linked recessive myotubular myopathy (MIM 310400) 23 29 42 12.3 17.0

Average relative rank position 15.9 17.8

a The average percentiles of all disease mutations in the genetic regions.
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Table 4. The 40 Proteins Associated with the 20 Polygenic Diseases

Disease Name Proteins

Autosomal recessive osteopetrosis (OPTB1 [MIM 259700]) CLCN7_HUMAN and VPP3_HUMAN
Crohn disease (CD [MIM 266600]) CAR15_HUMAN and IL10_HUMAN
Dejerine-Sottas syndrome (DSS [MIM 145900]) MYP0_HUMAN and PMP22_HUMAN
Epidermolysis bullosa simplex Dowling-Meara type (DM-EBS [MIM 131760]) K1C14_HUMAN and K2C5_HUMAN
Epidermolysis bullosa simplex Koebner type (K-EBS [MIM 131900]) K1C14_HUMAN and K2C5_HUMAN
Fast-channel congenital myasthenic syndrome (FCCMS [MIM 608930]) ACHA_HUMAN, ACHD_HUMAN, and ACHE_HUMAN
Glanzmann thrombasthenia (GT [MIM 273800]) ITA2B_HUMAN and ITB3_HUMAN
Isolated growth hormone deficiency type IB (IGHD IB [MIM 262400]) GHRHR_HUMAN and SOMA_HUMAN
Juvenile polyposis syndrome (JPS [MIM 174900]) BMR1A_HUMAN and SMAD4_HUMAN
LS ATP6_HUMAN, DHSA_HUMAN, and SURF1_HUMAN
Leukoencephalopathy with vanishing white matter (VWM [MIM 603896]) EI2BA_HUMAN, EI2BB_HUMAN, EI2BD_HUMAN, and EI2BE_HUMAN
Li-Fraumeni syndrome (LFS [MIM 151623]) CD2A1_HUMAN and P53_HUMAN
Loeys-Dietz aortic aneurysm syndrome (LDAS [MIM 609192]) TGFR1_HUMAN and TGFR2_HUMAN
Lung cancer (MIM 211980) BRAF1_HUMAN and EGFR_HUMAN
OI-II CO1A1_HUMAN and CO1A2_HUMAN
OI-IV CO1A1_HUMAN and CO1A2_HUMAN
Pachyonychia congenita type 1 (PC1 [MIM 167200]) K1C16_HUMAN and K2C6A_HUMAN
Pachyonychia congenita type 2 (PC2 [MIM 167210]) K1C17_HUMAN and K2C6B_HUMAN
Sitosterolemia (MIM 210250) ABCG5_HUMAN and ABCG8_HUMAN
Tuberous sclerosis complex (TSC [MIM 191100]) TSC1_HUMAN and TSC2_HUMAN

tations, I270T, T173A, and E122K, were predicted with high
scores (0.9782, 0.9717, and 0.8421, respectively). Studies
have identified these mutations from 12 individuals from
a malaria-endemic area in West Africa (8 with small spleens
and 4 with large ones).50 Therefore, these mutations are
likely to cause malaria.

In CASR_HUMAN (MIM 601199), two mutations, E767K
and E127A, received high scores of 0.9785 and 0.9761,
respectively. The mutation E767K was reported in a family
with autosomal dominant hypocalcemia and is suggested
to be associated with familial hypocalciuric hypercalcae-
mia (MIM 145980) and neonatal severe hyperparathy-
roidism (MIM 239200).51 It has also been found that the
missense mutation E127A caused familial hypocalcemia
in affected members of one family that is heterozygous
for such a mutation.52

In CD22_HUMAN (MIM 107266), one mutation, Q152E,
received a high score of 0.9789. Studies of 207 healthy
Japanese individuals and 68 patients with systemic lupus
erythematosus (SLE [MIM 152700])53 have shown that this
mutation existed with a marginally higher frequency in
patients with SLE (3 of 68 [4.4%]) than in healthy indi-
viduals (1 of 207 [0.5%]) ( ). This evidence suggestsP p .048
that this mutation is likely to cause SLE.

Discussion

In this article, we proposed a bioinformatics approach that
uses a novel statistical learning model (MSRV) with a set
of improved sequence-based numeric features to effec-
tively prioritize candidate nsSNPs occurring in genetic
regions. Our approach has several advantages. First, the
prioritization of nsSNPs within a genetic region gives users
flexibility in dealing with both monogenic and polygenic
disease mutations—that is, users can select the most likely
disease-causing candidates for further studies. Second, our

approach does not rely on protein-structure information;
instead, it is based on simple numeric features calculated
from protein sequences and multiple-sequence alignments,
and this maximizes the scope of the method’s appli-
cations. Third, our approach adopts a simple but pow-
erful statistical learning model (MSRV) that captures
subtle characteristics of mutations and outperforms other
methods. Finally, our approach can be combined with
case-control data in large-scale disease-mapping projects.
Traditional statistical methods suffer from serious multi-
ple-hypothesis-testing problems in dealing with large-
scale data and polygenic diseases. In contrast, our meth-
od is based purely on biophysical and biochemical infor-
mation of disease mutations and evolutionary informa-
tion of the corresponding sequences; thus, it complements
the traditional methods.

Certainly, our approach can be improved in the fol-
lowing directions. First, we currently use the Pfam mul-
tiple-sequence alignment31 to extract conserved protein
domains for the query protein sequence. As a result, we
are limited to the mutations occurring in known pro-
tein domains. This limitation can be overcome by using
some other multiple-sequence alignment methods, such
as BLAST,54 PSI-BLAST,55 and PANTHER.56 Second, parti-
tioning the mutations into 20 categories according to the
original amino acids is natural and feasible but not nec-
essarily optimal. Third, most of the current studies (in-
cluding ours) use classification models that are aimed at
predicting the categorical mutation effects, because effects
of mutations are given as categorical values in most mu-
tation databases. As a long-term goal, prediction of the
subtle effects of mutations causing common diseases would
be a significant step in this field. The major difficulty is
the lack of adequate samples for use in building statistical
learning models. When the database resources are avail-
able, many of the current classification models (including



358 The American Journal of Human Genetics Volume 81 August 2007 www.ajhg.org

Table 5. Prioritization of Mutations Occurring in the 40 Genetic Regions Underlying the 20
Polygenic Diseases

Disease Name

No. of Mutations
Rank

(percentile)a

Disease Neutral Unannotated
Swiss-Prot

Only
Swiss-Prot, HapMap,

and Ensembl

OPTB1 12 91 317 16.8 16.6
CD 13 48 94 35.8 45.9
DSS 24 66 221 14.1 14.7
DM-EBS 21 91 373 9.0 9.8
K-EBS 15 91 373 22.9 28.0
FCCMS 8 86 373 29.3 40.5
GT 36 69 380 24.6 26.9
IGHD IB 17 45 191 47.3 37.9
JPS 9 23 84 13.4 18.6
LS 9 52 149 19.3 17.7
VWM 11 70 202 28.6 36.3
LFS 16 80 40 6.7 7.1
LDAS 11 19 48 8.2 8.6
Lung cancer 18 46 86 19.7 23.2
OI-II 73 46 86 4.0 2.0
OI-IV 17 46 86 3.6 1.9
PC1 10 91 373 14.9 17.5
PC2 11 91 373 12.0 13.5
Sitosterolemia 16 24 18 26.0 23.5
TSC 32 111 315 31.9 29.5

Average relative rank position 17.7 18.2

a The average percentiles of all disease mutations in the genetic regions.

ours) could be extended to regression models, to establish
the relationships between the regression results and the
subtle modest effects. Finally, our approach is limited to
nsSNPs that have been found to be the major reason for
causing diseases. However, mutations in other genome
regions such as the transcriptional-factor binding sites and
promoter regions are also known to cause diseases. Further
studies are needed for these mutations.
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Web Resources

The URLs for data presented herein are as follows:

Ensembl, http://www.ensembl.org/
International HapMap Project, http://www.hapmap.org/
MSRV, http://msms.usc.edu/msrv/
Online Mendelian Inheritance in Man (OMIM), http://www.ncbi

.nlm.nih.gov/Omim/ (for ARMD2, OI-II, STEA2_HUMAN,
CALU_HUMAN, LHON, MELAS, LS, AD1, AD3, AD4, PPARg,
FPLD, HBB_HUMAN, CD36_HUMAN, CASR_HUMAN, familial
hypocalciuric hypercalcaemia, neonatal severe hyperparathy-

roidism, CD22_HUMAN, SLE, congenital bilateral absence of
the vas deferens, colorectal cancer, polycystic kidney disease
type I, Alport syndrome, RP, Wilson disease, cystic fibrosis, OI-
IV, OI-III, A colon tumor, antithrombin III deficiency, autoso-
mal dominant neurohypophyseal diabetes insipidus, autoso-
mal dominant RP, Best macular dystrophy, cerebral autosomal
dominant arteriopathy with subcortical infarcts and leukoen-
cephalopathy, chronic nonspherocytic hemolytic anemia, ci-
trullinemia type 1, Crouzon syndrome, dystrophic epidermo-
lysis bullosa, epidermolysis bullosa simplex Weber-Cockayne
type, epidermolytic hyperkeratosis, familial multiple endocrine
neoplasia type I, familial porphyria cutanea tarda, glycogen
storage disease II, glycogen storage disease Ib, hereditary non-
spherocytic hemolytic anemia, long QT syndrome type 1, ma-
turity onset diabetes of the young type III, mucopolysacchar-
idosis type IIIB, nail-patella syndrome, Sjoegren-Larsson syn-
drome, Smith-Lemli-Opitz syndrome, Tay-Sachs disease, Usher
syndrome type 1B, very long chain acyl-CoA dehydrogenase
deficiency, X-linked chronic granulomatous disease, X-linked
nephrogenic diabetes insipidus type I, X-linked recessive my-
otubular myopathy, OPTB1, CD, DSS, DM-EBS, K-EBS, FCCMS,
GT, IGHD IB, JPS, VWM, LFS, LDAS, lung cancer, PC1, PC2,
sitosterolemia, and TSC)

Pfam, http://www.sanger.ac.uk/Software/Pfam/
Swiss-Prot, http://expasy.org/sprot/
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